
Smart contracts
security assessment

Final report
Tariff: Standard

Printer Financial
March 2022

0xguard.com hello@0xguard.com

https://0xguard.com/#tariffs

Contents

Printer Financial Security assessment

March 2022 2

1. Introduction 3
2. Contracts checked 3
3. Procedure 3
4. Known vulnerabilities checked 4
5. Classification of issue severity 5
6. Issues 5
7. Conclusion 8
8. Disclaimer 9
9. Slither output 10

Introduction

The report has been prepared for Printer Financial team.

The audited code has md5 hash-sum 3d9a07d59e2b9cd95ffae0b1a725808b. Users should check if

they are interacting with the audited contract.

The audited contract is the Bridge contract helping to exchange a token between networks by burning

a token on the first network and minting it on the second network.

Name Printer Financial

Audit date 2022-03-21 - 2022-03-22

Language Solidity

Platform Binance Smart Chain, Avalanche Network, Fantom Network,
Cronos Network

Contracts checked

Name Address

Bridge.sol

Procedure

We perform our audit according to the following procedure:

Automated analysis

Scanning the project's smart contracts with several publicly available automated Solidity
analysis tools

Manual verification (reject or confirm) all the issues found by the tools

Manual audit

Printer Financial Security assessment

March 2022 3

Manually analyse smart contracts for security vulnerabilities

Smart contracts' logic check

Known vulnerabilities checked

Title Check result

Unencrypted Private Data On-Chain passed

Code With No Effects passed

Message call with hardcoded gas amount passed

Typographical Error passed

DoS With Block Gas Limit passed

Presence of unused variables passed

Incorrect Inheritance Order passed

Requirement Violation passed

Weak Sources of Randomness from Chain
Attributes

passed

Shadowing State Variables passed

Incorrect Constructor Name passed

Block values as a proxy for time passed

Authorization through tx.origin passed

DoS with Failed Call passed

Delegatecall to Untrusted Callee passed

Use of Deprecated Solidity Functions passed

Assert Violation passed

State Variable Default Visibility passed

Reentrancy passed

Printer Financial Security assessment

March 2022 4

https://swcregistry.io/docs/SWC-136
https://swcregistry.io/docs/SWC-135
https://swcregistry.io/docs/SWC-134
https://swcregistry.io/docs/SWC-129
https://swcregistry.io/docs/SWC-128
https://swcregistry.io/docs/SWC-131
https://swcregistry.io/docs/SWC-125
https://swcregistry.io/docs/SWC-123
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-120
https://swcregistry.io/docs/SWC-119
https://swcregistry.io/docs/SWC-118
https://swcregistry.io/docs/SWC-116
https://swcregistry.io/docs/SWC-115
https://swcregistry.io/docs/SWC-113
https://swcregistry.io/docs/SWC-112
https://swcregistry.io/docs/SWC-111
https://swcregistry.io/docs/SWC-110
https://swcregistry.io/docs/SWC-108
https://swcregistry.io/docs/SWC-107

Unprotected SELFDESTRUCT InstructionUnprotected SELFDESTRUCT Instruction passed

Unprotected Ether Withdrawal passed

Unchecked Call Return Value passed

Floating Pragma passed

Outdated Compiler Version passed

Integer Overflow and Underflow passed

Function Default Visibility passed

Classification of issue severity

High severity High severity issues can cause a significant or full loss of funds, change
of contract ownership, major interference with contract logic. Such issues
require immediate attention.

Medium severity Medium severity issues do not pose an immediate risk, but can be
detrimental to the client's reputation if exploited. Medium severity issues
may lead to a contract failure and can be fixed by modifying the contract
state or redeployment. Such issues require attention.

Low severity Low severity issues do not cause significant destruction to the contract's
functionality. Such issues are recommended to be taken into
consideration.

Issues

High severity issues

No issues were found

Printer Financial Security assessment

March 2022 5

https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-106
https://swcregistry.io/docs/SWC-105
https://swcregistry.io/docs/SWC-104
https://swcregistry.io/docs/SWC-103
https://swcregistry.io/docs/SWC-102
https://swcregistry.io/docs/SWC-101
https://swcregistry.io/docs/SWC-100

Medium severity issues

No issues were found

Low severity issues

1. Lack of events on important value changes (Bridge.sol)

Many important setter functions don't emit events on important value changes.

function setProcessedStatus(uint256 _txId, bool _status) external onlyBridgeAdmins

function setBridgeOperator(address _account, bool _operator) external onlyBridgeAdmins

function setPaper(address _paper) external onlyBridgeAdmins

function setTreasury(address _treasury) external onlyBridgeAdmins

function setBridgeStatus(bool _status) external onlyBridgeAdmins

function setChainStatus(uint256 _chain, bool _status) external onlyBridgeAdmins

function setMinTokenForChain(uint256 _chain, uint256 _amount) external onlyBridgeAdmins

function setNextTxId(uint256 _txId) external onlyBridgeAdmins

Recommendation: We recommend adding events to make tracking changes easier.

2. Return value of transferFrom() not checked (Bridge.sol)

The function sendRequest() does not check return value of the transferFrom() call.

function sendRequest(address _recipient, uint256 _chain, uint256 _amount) external {

 ...

 IERC20(paper).transferFrom(msg.sender, address(this), _amount);

 ...

 }

Printer Financial Security assessment

March 2022 6

Recommendation: Use OpenZeppelin library SafeERC20.

Printer Financial Security assessment

March 2022 7

Conclusion

Printer Financial Bridge.sol contract was audited. 2 low severity issues were found.

It must be noted that the architecture of the bridge is highly centralised. The contract is dependant on

the bridgeAdmins and the bridgeOperators accounts. bridgeAdmins can set bridgeOperators, if a

bridgeOperator is compromised attacker can mint any amount of the paper tokens. These accounts

must be properly secured.

Printer Financial Security assessment

March 2022 8

Disclaimer

This report is subject to the terms and conditions (including without limitation, description of services,

confidentiality, disclaimer and limitation of liability)set forth in the Services Agreement, or the scope of

services, and terms and conditions provided to the Company in connection with the Agreement. This

report provided in connection with the Services set forth in the Agreement shall be used by the

Company only to the extent permitted under the terms and conditions set forth in the Agreement. This

report may not be transmitted, disclosed, referred to or relied upon by any person for any purposes

without 0xGuard prior written consent.

This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular

project or team. This report is not, nor should be considered, an indication of the economics or value

of any “product” or “asset” created by any team or project that contracts 0xGuard to perform a

security assessment. This report does not provide any warranty or guarantee regarding the absolute

bug-free nature of the technology analyzed, nor do they provide any indication of the technologies

proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with

any particular project. This report in no way provides investment advice, nor should be leveraged as

investment advice of any sort. This report represents an extensive assessing process intending to

help our customers increase the quality of their code while reducing the high level of risk presented

by cryptographic tokens and blockchain technology.

Printer Financial Security assessment

March 2022 9

Slither output

Bridge.sendRequest(address,uint256,uint256) (Bridge.sol#50-66) ignores return value by

IERC20(paper).transferFrom(msg.sender,address(this),_amount) (Bridge.sol#62)

Bridge.governanceRecoverUnsupported(IERC20,uint256,address) (Bridge.sol#119-121)

ignores return value by _token.transfer(_to,_amount) (Bridge.sol#120)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#unchecked-

transfer

Bridge.constructor(uint256,address,address)._paper (Bridge.sol#39) lacks a zero-check

on :

 - paper = _paper (Bridge.sol#42)

Bridge.constructor(uint256,address,address)._treasury (Bridge.sol#39) lacks a zero-

check on :

 - treasury = _treasury (Bridge.sol#43)

Bridge.setPaper(address)._paper (Bridge.sol#95) lacks a zero-check on :

 - paper = _paper (Bridge.sol#96)

Bridge.setTreasury(address)._treasury (Bridge.sol#99) lacks a zero-check on :

 - treasury = _treasury (Bridge.sol#100)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#missing-zero-

address-validation

Reentrancy in Bridge.bridgeMint(uint256,address,address,uint256) (Bridge.sol#70-83):

 External calls:

 - ITreasury(treasury).bridgeMint(_recipient,_amount) (Bridge.sol#80)

 Event emitted after the call(s):

 - SendProcessed(_txId,_sender,_recipient,chain,_amount) (Bridge.sol#82)

Reentrancy in Bridge.sendRequest(address,uint256,uint256) (Bridge.sol#50-66):

 External calls:

 - IERC20(paper).transferFrom(msg.sender,address(this),_amount) (Bridge.sol#62)

 - ERC20Burnable(paper).burn(_amount) (Bridge.sol#63)

 Event emitted after the call(s):

 - SendRequested(_txId,msg.sender,_recipient,_chain,_amount) (Bridge.sol#65)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#reentrancy-

vulnerabilities-3

Bridge.sendRequest(address,uint256,uint256) (Bridge.sol#50-66) compares to a boolean

constant:

 -require(bool,string)(enabledChains[_chain] == true,Bridge: chain is not

Printer Financial Security assessment

March 2022 10

enabled/available) (Bridge.sol#52)

Bridge.bridgeMint(uint256,address,address,uint256) (Bridge.sol#70-83) compares to a

boolean constant:

 -require(bool,string)(bridgeEnabled == true,Bridge: bridge is not enabled)

(Bridge.sol#72)

Bridge.bridgeMint(uint256,address,address,uint256) (Bridge.sol#70-83) compares to a

boolean constant:

 -require(bool,string)(processedTransfers[_txId] != true,Bridge: transaction

already processed) (Bridge.sol#75)

Bridge.onlyBridgeOperators() (Bridge.sol#26-29) compares to a boolean constant:

 -require(bool,string)(bridgeOperators[msg.sender] == true,Bridge: caller is not

a bridge operator) (Bridge.sol#27)

Bridge.onlyBridgeAdmins() (Bridge.sol#31-34) compares to a boolean constant:

 -require(bool,string)(bridgeAdmins[msg.sender] == true,Bridge: caller is not a

bridge admin) (Bridge.sol#32)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#boolean-

equality

Different versions of Solidity is used:

 - Version used: ['^0.8.0', '^0.8.9']

 - ^0.8.0 (@openzeppelin\contracts\token\ERC20\ERC20.sol#4)

 - ^0.8.0 (@openzeppelin\contracts\token\ERC20\IERC20.sol#4)

 - ^0.8.0 (@openzeppelin\contracts\token\ERC20\extensions\ERC20Burnable.sol#4)

 - ^0.8.0 (@openzeppelin\contracts\token\ERC20\extensions\IERC20Metadata.sol#4)

 - ^0.8.0 (@openzeppelin\contracts\utils\Context.sol#4)

 - ^0.8.9 (Bridge.sol#4)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#different-

pragma-directives-are-used

Context._msgData() (@openzeppelin\contracts\utils\Context.sol#21-23) is never used and

should be removed

ERC20._mint(address,uint256) (@openzeppelin\contracts\token\ERC20\ERC20.sol#252-262) is

never used and should be removed

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#dead-code

Pragma version^0.8.0 (@openzeppelin\contracts\token\ERC20\ERC20.sol#4) allows old

versions

Pragma version^0.8.0 (@openzeppelin\contracts\token\ERC20\IERC20.sol#4) allows old

versions

Pragma version^0.8.0 (@openzeppelin\contracts\token\ERC20\extensions

\ERC20Burnable.sol#4) allows old versions

Printer Financial Security assessment

March 2022 11

Pragma version^0.8.0 (@openzeppelin\contracts\token\ERC20\extensions

\IERC20Metadata.sol#4) allows old versions

Pragma version^0.8.0 (@openzeppelin\contracts\utils\Context.sol#4) allows old versions

Pragma version^0.8.9 (Bridge.sol#4) necessitates a version too recent to be trusted.

Consider deploying with 0.6.12/0.7.6/0.8.7

solc-0.8.9 is not recommended for deployment

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#incorrect-

versions-of-solidity

Parameter Bridge.sendRequest(address,uint256,uint256)._recipient (Bridge.sol#50) is not

in mixedCase

Parameter Bridge.sendRequest(address,uint256,uint256)._chain (Bridge.sol#50) is not in

mixedCase

Parameter Bridge.sendRequest(address,uint256,uint256)._amount (Bridge.sol#50) is not in

mixedCase

Parameter Bridge.bridgeMint(uint256,address,address,uint256)._txId (Bridge.sol#70) is

not in mixedCase

Parameter Bridge.bridgeMint(uint256,address,address,uint256)._sender (Bridge.sol#70) is

not in mixedCase

Parameter Bridge.bridgeMint(uint256,address,address,uint256)._recipient (Bridge.sol#70)

is not in mixedCase

Parameter Bridge.bridgeMint(uint256,address,address,uint256)._amount (Bridge.sol#70) is

not in mixedCase

Parameter Bridge.setProcessedStatus(uint256,bool)._txId (Bridge.sol#87) is not in

mixedCase

Parameter Bridge.setProcessedStatus(uint256,bool)._status (Bridge.sol#87) is not in

mixedCase

Parameter Bridge.setBridgeOperator(address,bool)._account (Bridge.sol#91) is not in

mixedCase

Parameter Bridge.setBridgeOperator(address,bool)._operator (Bridge.sol#91) is not in

mixedCase

Parameter Bridge.setPaper(address)._paper (Bridge.sol#95) is not in mixedCase

Parameter Bridge.setTreasury(address)._treasury (Bridge.sol#99) is not in mixedCase

Parameter Bridge.setBridgeStatus(bool)._status (Bridge.sol#103) is not in mixedCase

Parameter Bridge.setChainStatus(uint256,bool)._chain (Bridge.sol#107) is not in

mixedCase

Parameter Bridge.setChainStatus(uint256,bool)._status (Bridge.sol#107) is not in

mixedCase

Parameter Bridge.setMinTokenForChain(uint256,uint256)._chain (Bridge.sol#111) is not in

mixedCase

Parameter Bridge.setMinTokenForChain(uint256,uint256)._amount (Bridge.sol#111) is not

Printer Financial Security assessment

March 2022 12

in mixedCase

Parameter Bridge.setNextTxId(uint256)._txId (Bridge.sol#115) is not in mixedCase

Parameter Bridge.governanceRecoverUnsupported(IERC20,uint256,address)._token

(Bridge.sol#119) is not in mixedCase

Parameter Bridge.governanceRecoverUnsupported(IERC20,uint256,address)._amount

(Bridge.sol#119) is not in mixedCase

Parameter Bridge.governanceRecoverUnsupported(IERC20,uint256,address)._to

(Bridge.sol#119) is not in mixedCase

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#conformance-to-

solidity-naming-conventions

name() should be declared external:

 - ERC20.name() (@openzeppelin\contracts\token\ERC20\ERC20.sol#62-64)

symbol() should be declared external:

 - ERC20.symbol() (@openzeppelin\contracts\token\ERC20\ERC20.sol#70-72)

decimals() should be declared external:

 - ERC20.decimals() (@openzeppelin\contracts\token\ERC20\ERC20.sol#87-89)

totalSupply() should be declared external:

 - ERC20.totalSupply() (@openzeppelin\contracts\token\ERC20\ERC20.sol#94-96)

balanceOf(address) should be declared external:

 - ERC20.balanceOf(address) (@openzeppelin\contracts\token

\ERC20\ERC20.sol#101-103)

transfer(address,uint256) should be declared external:

 - ERC20.transfer(address,uint256) (@openzeppelin\contracts\token

\ERC20\ERC20.sol#113-116)

approve(address,uint256) should be declared external:

 - ERC20.approve(address,uint256) (@openzeppelin\contracts\token

\ERC20\ERC20.sol#132-135)

transferFrom(address,address,uint256) should be declared external:

 - ERC20.transferFrom(address,address,uint256) (@openzeppelin\contracts\token

\ERC20\ERC20.sol#150-164)

increaseAllowance(address,uint256) should be declared external:

 - ERC20.increaseAllowance(address,uint256) (@openzeppelin\contracts\token

\ERC20\ERC20.sol#178-181)

decreaseAllowance(address,uint256) should be declared external:

 - ERC20.decreaseAllowance(address,uint256) (@openzeppelin\contracts\token

\ERC20\ERC20.sol#197-205)

burn(uint256) should be declared external:

 - ERC20Burnable.burn(uint256) (@openzeppelin\contracts\token\ERC20\extensions

\ERC20Burnable.sol#20-22)

burnFrom(address,uint256) should be declared external:

Printer Financial Security assessment

March 2022 13

 - ERC20Burnable.burnFrom(address,uint256) (@openzeppelin\contracts\token

\ERC20\extensions\ERC20Burnable.sol#35-42)

Reference: https://github.com/crytic/slither/wiki/Detector-Documentation#public-

function-that-could-be-declared-external

Bridge.sol analyzed (7 contracts with 77 detectors), 57 result(s) found

Printer Financial Security assessment

March 2022 14

